Impaired Expression of Focal Adhesion Kinase in Mesenchymal Stromal Cells from Low-Risk Myelodysplastic Syndrome Patients

نویسندگان

  • Yuenv Wu
  • Carmen Mariana Aanei
  • Sanae Kesr
  • Tiphanie Picot
  • Denis Guyotat
  • Lydia Campos Catafal
چکیده

The pathogenic role of mesenchymal stromal cells (MSCs) in myelodysplastic syndromes (MDS) development and progression has been investigated by numerous studies, yet, it remains controversial in some aspects (1, 2). In the present study, we found distinct features of MSCs from low-risk (LR)-MDS stromal microenvironment as compared to those from healthy subjects. At the molecular level, focal adhesion kinase, a key tyrosine kinase in control of cell proliferation, survival, and adhesion process, was found profoundly suppressed in expression and activation in LR-MDS MSC. At a functional level, LR-MDS MSCs showed impaired growth and clonogenic capacity, which were independent of cellular senescence and apoptosis. The pro-adipogenic differentiation and attenuated osteogenic capacity along with reduced SDF-1 expression could be involved in creating an unfavorable microenvironment for hematopoiesis. In conclusion, our experiments support the theory that the stromal microenvironment is fundamentally altered in LR-MDS, and these preliminary data offer a new perspective on LR-MDS pathophysiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal stromal cells from patients with myelodyplastic syndrome display distinct functional alterations that are modulated by lenalidomide.

The contribution of the bone marrow microenvironment in myelodysplastic syndrome is controversial. We therefore analyzed the functional properties of primary mesenchymal stromal cells from patients with myelodysplastic syndrome in the presence or absence of lenalidomide. Compared to healthy controls, clonality and growth were reduced across all disease stages. Furthermore, differentiation defec...

متن کامل

Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients.

UNLABELLED Background Recent findings suggest that a specific deletion of Dicer1 in mesenchymal stromal cell-derived osteoprogenitors triggers several features of myelodysplastic syndrome in a murine model. Our aim was to analyze DICER1 and DROSHA gene and protein expression in mesenchymal stromal cells (the osteoblastic progenitors) obtained from bone marrow of myelodysplastic syndrome patient...

متن کامل

Focal Adhesion Kinase (FAK) Involvement in Human Endometrial Remodeling During the Menstrual Cycle

Background: Endometrial remodeling occurs during each menstrual cycle in women. Reports have shown that, in a variety of cell types, processes such as proliferation, signaling complex formation and extra cellular matrix remodeling require a cytoplasmic tyrosine kinase, focal adhesion kinase (FAK). The present study has focused on the expression pattern of FAK in human endometrium during the men...

متن کامل

Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes.

The contribution of bone marrow mesenchymal stromal cells (BMMSCs) to the pathogenesis of myelodysplastic syndrome (MDS) has created controversies. In this study, we confirmed that BMMSCs from MDS patients showed prominent features of senescence, which were characterized by increased cell size, decreased proliferation and colony-forming potential, alteration of cytoskeleton, and increased senes...

متن کامل

PTK2 and PTPN11 expression in myelodysplastic syndromes

OBJECTIVE The aim of this study was to evaluate the expression of protein tyrosine kinase 2 and protein tyrosine phosphatase non-receptor type 11, which respectively encode focal adhesion kinase protein and src homology 2 domain-containing protein-tyrosine phosphatase 2, in hematopoietic cells from patients with myelodysplastic syndromes. METHODS Protein tyrosine kinase 2 and tyrosine phospha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017